An additive-free silicon anode in nanotube morphology as a model lithium ion battery material
نویسندگان
چکیده
Ordered arrays of parallel, cylindrical silicon nanotubes are obtained by aluminothermic reduction SiO2 generated atomic layer deposition (ALD) on nanoporous aluminum oxide templates. The to amorphous Si (a-Si) is characterized a combination X-ray diffraction (XRD), solid-state cross-polarization magic-angle spinning nuclear magnetic resonance (29Si CP-MAS NMR), ultraviolet-visible spectroscopy, attenuated total reflectance infrared spectroscopy (ATR-IR), and photoelectron (XPS). These a-Si nanotube electrochemically active in lithium-ion battery environment when prepared Cu current collectors without any additives. absence the traditional additive carbon black, which an inert conductor, increases proportion capacity associated with faradaic reactions (Li incorporation) respect capacitive component. Electrochemical impedance (EIS) charge-discharge tests demonstrate that morphology yields improved tolerance fast cycling.
منابع مشابه
A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material
In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...
متن کاملUltra strong silicon-coated carbon nanotube nonwoven fabric as a multifunctional lithium-ion battery anode.
Materials that can perform simultaneous functions allow for reductions in the total system mass and volume. Developing technologies to produce flexible batteries with good performance in combination with high specific strength is strongly desired for weight- and power-sensitive applications such as unmanned or aerospace vehicles, high-performance ground vehicles, robotics, and smart textiles. S...
متن کاملSilicon/single-walled carbon nanotube composite paper as a flexible anode material for lithium ion batteries
متن کامل
Additive-free thick graphene film as an anode material for flexible lithium-ion batteries.
This work demonstrates a simple route to develop mechanically flexible electrodes for Li-ion batteries (LIBs) that are usable as lightweight effective conducting networks for both cathodes and anodes. Removing electrochemically dead elements, such as binders, conducting agents and metallic current collectors, from the battery components will allow remarkable progress in this area. To investigat...
متن کاملSynthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries
In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electrochimica Acta
سال: 2021
ISSN: ['1873-3859', '0013-4686']
DOI: https://doi.org/10.1016/j.electacta.2021.138522